Object detection; TensorFlow CPU; KITTI 0009; Linux; self-driving car; via cloud
Component: cr-solution:demo-obj-detection-kitti-0009-tf-cpu-linux-azure (v1.0.0)
Added by: gfursin (2019-12-23 13:05:03)
Creation date: 2019-10-07 07:26:48
CID: 1dde4902b05ae08f:fc57143d4b90bde4cr-solution:demo-obj-detection-kitti-0009-tf-cpu-linux-azure  )

Sign up here to be notified when new results are reproduced or new CodeReef components are shared!


Related paper: MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Related and reproduced results (crowd-experiments): crowd-benchmarking-mlperf-inference-classification-mobilenets
How to get stable CodeReef version (under development):
  pip install codereef
  cr init demo-obj-detection-kitti-0009-tf-cpu-linux-azure
  cr run demo-obj-detection-kitti-0009-tf-cpu-linux-azure
  # If benchmarking is supported:
  cr benchmark demo-obj-detection-kitti-0009-tf-cpu-linux-azure
Portable CK workflow:
  ck run program:squeezedet --cmd_key=use_continuous
Host OS: linux-64 (Ubuntu 18.04.3 LTS)
Target OS: linux-64 (Ubuntu 18.04.3 LTS)
Target machine: Microsoft Corporation 7.0 (Virtual Machine)
Target CPU: Intel(R) Xeon(R) CPU E5-2673 v4 @ 2.30GHz
Target CPUs:
Target GPU: Microsoft Corporation Hyper-V virtual VGA
Python version for virtual env: 3.6.9

Test workflow in your browser via CodeReef client

CodeReef client connection cr start

unless you start in manually




Dependencies on other components


Prerequisites for further automation:
   You may need to install imagemagick to have "convert" in the path if you want support for jpeg images
   

      
pip install opencv-python ck install package --tags=dataset,object-detection,kitti-drive-0009 ck install package --tags=tensorflow,demo,squeezedet ck install package --tags=model,squeezedet ck install package:lib-tensorflow-1.10.1-cpu


All versions:


All files (click to download):


Public comments

    Please log in to add your comment!


If you notice inapropriate content that should not be here, please report us as soon as possible and we will try to remove it within 48 hours!